Gene Expression Data Analysis Using Closed Itemset Mining for Labeled Data
نویسندگان
چکیده
منابع مشابه
Gene expression data analysis using closed item set mining for labeled data.
This article presents an approach to microarray data analysis using discretised expression values in combination with a methodology of closed item set mining for class labeled data (RelSets). A statistical 2 x 2 factorial design analysis was run in parallel. The approach was validated on two independent sets of two-color microarray experiments using potato plants. Our results demonstrate that t...
متن کاملFrequent Data Itemset Mining Using VS_Apriori Algorithms
The organization, management and accessing of information in better manner in various data warehouse applications have been active areas of research for many researchers for more than last two decades. The work presented in this paper is motivated from their work and inspired to reduce complexity involved in data mining from data warehouse. A new algorithm named VS_Apriori is introduced as the ...
متن کاملResult Analysis of Mining Fast Frequent Itemset Using Compacted Data
Data mining and knowledge discovery of database is magnetizing wide array of non-trivial research arena, making easy to industrial decision support systems and continues to expand even beyond imagination in one such promising field like Artificial Intelligence and facing the real world challenges. Association rules forms an important paradigm in the field of data mining for various databases li...
متن کاملFrequent Closed Itemset Mining Using Prefix Graphs
This paper presents PGMiner, a novel graph-based algorithm for mining frequent closed itemsets. Our approach consists of constructing a prefix graph structure and decomposing the database to variable length bit vectors, which are assigned to nodes of the graph. The main advantage of this representation is that the bit vectors at each node are relatively shorter than those produced by existing v...
متن کاملClosed Sets for Labeled Data
Closed sets have been proven successful in the context of compacted data representation for association rule learning. However, their use is mainly descriptive, dealing only with unlabeled data. This paper shows that when considering labeled data, closed sets can be adapted for classification and discrimination purposes by conveniently contrasting covering properties on positive and negative ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: OMICS: A Journal of Integrative Biology
سال: 2010
ISSN: 1536-2310,1557-8100
DOI: 10.1089/omi.2009.0126